Initial and Boundary Condition parameter values for LDAT landfill models

Note that the example values are based on those used in the Ten Element Example – passive model. The values that are available in the LDAT model editor are not repeated here. To see these values the Ten Element Example – passive model should be selected from the Default Cases list on the LDAT Dashboard and cloned into the User Cases list. Then the Initial and Boundary Conditions parameter values may be seen by selecting the clone into the editor (for example by using Actions\Edit in the User Cases list or double clicking the Case name).

Some sets of the Initial and Boundary Conditions parameter values are not yet available for editing. Details of these built in values are given here. Most of these values are standard values that may be found in the literature. They are repeated here for convenience, and to serve as confirmation that LDAT uses values that are normally accepted. It is unlikely that a user would need to change these standard values – but it is intended to make these values available for user editing in due course.

The complete set of Initial and Boundary Condition parameter values for LDAT is shown in Table 1, together with a note marking those that are currently not available for editing. Additional Tables are then provided giving details of the built in values.

Editor Tab name	Application	Value group name	Note
		Number of elements	
		Origin coordinates	
		Slice dimensions	
		van Genuchten values	
		Monod parameters	
		Waste converter EA	
Model	Model wide	Waste converter Compounds	
		Dissolution parameters	Not editable
		Chemical pathways	Not editable
		Henry parameters	Not editable
		Binary and Fickian diffusion coeffs	Not editable
		Enthalpy data	Not editable
		Equilibrium and dissolution coefficient temperature functions	Not editable
		Dry density and permeability	
Active elements		Heat Generation and Transfer	
		Effective density coefficients	
		Waste characteristics	
Waste type		Phase fractions and density	
waste type		Initial liquid and gas compound concentrations vol/vol	
		Inhibition parameter values	
		BC Stresses	
		BC Permeability/Thermal conductivity	
Boundary elements		Liq/Gas mass v/v	
boundary elements		Transient content control	
		Transient boundary conditions	
		BC Inert stock	
	Model wide	Calculation options	
Calculation data		Time Iteration Settings	
		Time Iteration Control	
		Inhibition/Temp options	
		van Genuchten options	

Dissolution parameters

Dissolution	Rate of dissolution	solution		day ⁻¹	
		Protein	5.0E-06	(M/I) ²	
		Fat	6.4E-06		
	Solubility product	Carbohydrate	1.5E-05	(171/1)	
		Glucose	3.1E-05		

Chemical pathways

The products of waste degradation are estimated by starting with a simple specification of the solid waste in terms of the characteristic percentage content of: Green waste and wood; Food; Paper card and cartons; Textiles and carpets; and Inert material. This specification is then converted into the initial values for the Protein, Fat, Carbohydrates and Glucose chemical compounds. These compounds are classified further into fast, medium and slow degradable materials. The degradation can be anaerobic or aerobic when dissolved oxygen is available.

There are a large number of chemical degradation pathways available in LDAT. The core pathways are as follows.

The anaerobic chemical pathways are:

Protein as $C_{46}H_{77}O_{17}N_{12}S$ forms aqueous acid $C_4H_8O_2$ and acetic acid $C_2H_4O_2$ anaerobically
$C_{46}H_{76}O_{17}N_{12}S^{-} + 27.5H_2O = 7.39C_4H_8O_2 + 5.15C_2H_4O_2 + 6.14H_2CO_3 + 12NH_3 + H_2S + OH^{-1}$
Fat represented as $C_{55}H_{104}O_6$ forms aqueous and acetic acid anaerobically
$C_{55}H_{103}O_6^- + 9.88H_2O + 6.56H_2CO_3 = 10.56C_4H_8O_2 + 6.72C_2H_4O_2 + 5.88CH_4 + OH^-$
Carbohydrate high order forms aqueous acid anaerobically
$C_{12}H_{23}O_{12}^{-1} + 2H_2O = 2C_4H_8O_2 + CH_4 + 3H_2CO_3 + OH^{-1}$
Glucose - Carbohydrate forms acetic acid anaerobically
$C_6H_{11}O_6^- + 2H_2O = 2C_2H_4O_2 + CH_4 + H_2CO_3 + OH$

There is a corresponding set of aerobic pathways:

Aerobic degradation of Protein ion
$C_{46}H_{76}O_{17}N_{12}S^{-} + 49.75O_2 + 26.5H_2O = 46H_2CO_3 + 12NH_3 + SO_4^{-} + OH^{-}$
Aerobic degradation of Fat ion
$C_{55}H_{103}O_6^- + 78O_2 + 4H_2O = 55H_2CO_3 + OH^-$
Aerobic degradation of Carbohydrate ion
$C_{12}H_{23}O_{12} + 12O_2 + H_2O = 12H_2CO_3 + OH^2$
Aerobic degradation of Glucose ion
$C_6H_{11}O_6^- + 6O_2 + H_2O = 6H_2CO_3 + OH$
$C_6 \Pi_{11} O_6 + O O_2 + \Pi_2 O = O \Pi_2 O O_3 + O O O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$

The pathways for the breakdown of the products Aqueous and Acetic acids are:

Aqueous acid $CH_3(CH_2)_2COOH$, $C_4H_8O_2$ forms acetic acid anaerobically	
$4C_4H_8O_2 + 6H_2O = 4C_2H_4O_2 + 6CH_4 + 2H_2CO_3$	
Acetic acid forms methane	
$C_2H_4O_2 + H_2O = CH_4 + H_2CO_3$	

And those for Methane oxidation and Denitrification are:

Methane oxidation
$CH_4 + 2O_2 = H_2O + H_2CO_3$
Nitrification by nitrosomonas bacteria
$NH_4^+ + 1.5O_2 = NO_2^- + 2H^+ + H_2O$
Nitrification by nitrobactor bacteria
$NO_2^{-} + 0.5O_2 = NO_3^{-}$

The degradation of each pathway is facilitated by an associated bacteria compound, and in the cases of Protein, Fat, Carbohydrate and Glucose the bacteria growth reactions are:

Formation of biomass using protein C ₄₆ H ₇₇ O ₁₇ N ₁₂ S
$5C_{46}H_{76}O_{17}N_{12}S^{-}-14NH_{4}^{+} = 46C_{5}H_{7}NO_{2} + 56H^{+} - 27H_{2}O + 5SO_{4}^{-2}$
Formation of biomass using fat represented as $C_{55}H_{104}O_6$
$5C_{55}H_{103}O_6^{-} + 55NH_4^{+} = 55C_5H_7NO_2 + 510H^{+} - 80H_2O$
Formation of biomass using carbohydrate high order
$5C_{12}H_{23}O_{12}^{-} + 12NH_4^{+} = 12C_5H_7NO_2 + 7H^+ + 36H_2O$
Formation of biomass using glucose (TUB)
$C_6H_{11}O_6^- + 1.2NH_4^+ = 1.2C_5H_7NO_2 + 0.2H^+ + 3.6H_2O$

All bacteria compounds are assumed to die off along the pathway:

Formation of glucose from biomass (TUB)	
$6C_5H_7NO_2 + 19H_2O = 5C_6H_{11}O_6^- + 6NH_4^+ + OH^-$	

The Glucose ion in the bacteria death pathway can be set in LDAT to become fully available to the Glucose degradation system, partially available, or simply act as a non-degradable compound.

Henry parameters

_	Henry	Transfer	α_{H}	
Gas	coefficient	rate		
	1/kPa	per day	К	
CO ₂	1.61E-05	3	2400	
CH ₄	2.28E-07	3	1800	
02	4.24E-07	3	1600	
NH_3	5.00E-03	3	4200	
N ₂	1.74E-07	3	1300	
H ₂ S	3.48E-05	3	2100	
SO42-	9.15E-04	3	2900	

Binary and Fickian diffusion coefficients

Compound pair		Binary diffusion coefficient		Dissolved gas	Fickian diffusion coefficient
		m ² /day		yas	m²/day
N ₂	O ₂	1.80		CO2	1.66E-04
N ₂	CH_4	1.85		CH4	1.29E-04
N ₂	CH_4	1.42		H2	3.89E-04
O ₂	CH_4	1.96		H2S	1.22E-04
O ₂	CO ₂	1.41		N2	1.62E-04
CH_4	CO ₂	1.47		NH3	1.42E-04
				02	1.81E-04

Enthalpy data

Compound	Enthalpy of formation
Acetic acid	-8132
Ammonia	-4751
Ammonium ion	-7371
Aqueous acid	-8132
Bicarbonate ion	-11306
Biomass	-4400
Calcium ion	-9000
Carbonate ion	-11216
Carbon dioxide	-8900
Carbonic acid	-11259
Hydrogen sulphide	-1152
Hydroxidelon	-13524
Methane	-4674
Nitrate ion	-3328
Nitrite ion	-2308
Oxygen	-15000
Waste as Protein etc	-7000
Sulphate	-9434
Water	-15865

Equilibrium and dissolution coefficient temperature functions

Component	Equilibrium	a_{0}	a_1	<i>a</i> ₂	<i>a</i> ₃	a_4
Carbonate ion	$K = \frac{\left[H^{+}\right]CO_{3}^{2-}}{\left[HCO_{3}^{-}\right]}$	10.63	-1.61E-02	1.74E-04	-7.63E-07	1.52E-09
Bicarbonate ion	$K = \frac{\begin{bmatrix} H^+ & HCO_3^- \end{bmatrix}}{\begin{bmatrix} H_2CO_3 \end{bmatrix}}$	6.58	-1.37E-02	2.01E-04	-9.39E-07	1.71E-09
Calcium carbonate	$K = \begin{bmatrix} C_a^+ \end{bmatrix} \begin{bmatrix} CO_3^- \end{bmatrix}$	8.05	9.11E-03	7.56E-05	-1.16E-07	0.0

$$pK = \sum_{n=0}^{4} a_n T^n \quad (T \text{ in } ^\circ \text{C})$$

Component	Equilibrium	<i>a</i> ₋₁	<i>a</i> ₀
Water	$K = \begin{bmatrix} H^+ \end{bmatrix} O H^- \end{bmatrix}$	4.20	2920.43
Ammonia	$K = \frac{\left[H^{+}\right]\left[NH_{3}\right]}{\left[NH_{3}^{+}\right]}$	0.09	2729.92
Aqueous and Acetic acid	$K = \frac{\left[H^{+}\right]\left[H_{3}C_{2}O_{2}^{-}\right]}{\left[H_{4}C_{2}O_{2}\right]}$	4.85	-21.85
Protein	$K = \left[H^+ \left[C_{46} H_{76} O_{17} N_{12} S^- \right] \right]$	3.06	655.64
Fat	$K = \left[H^{+}\right]C_{55}H_{103}O_{6}^{-}$	2.96	655.64
Carbohydrate	$K = \left[H^{+}\right]C_{12}H_{23}O_{12}^{-}$	2.59	655.64
Glucose	$K = \left[H^+\right] \left[C_6 H_{11} O_6^{-1}\right]$	2.28	655.64

 $pK = a_0 + a_{-1}/T$ (T in K)